Вопрос о регуляции размножения клеток в механизме канцерогенеза занимает центральное место. Это обусловлено тем, что пролиферация является важнейшим процессом, обеспечивающим воспроизводство тканей и органов, а ее нарушение приводит ко многим патологиям, одной из которых является рак. Обычно акцент делается при выяснении причин канцерогенеза на повреждении онкогенов, однако регуляция размножения и дифференцировки клеток осуществляется на тканевом уровне механизмом го-меостаза. Управление клеточным размножением осуществляется стимуляторами митоза (ФР) и ингибиторами (кейлонами) пролиферации. Основным механизмом регуляции по принципу обратной связи является кейлонный механизм.
Кейлонная система ткани является важнейшим звеном управления делением клеток, через которую реализуется действие регулирующих факторов. Различные ткани характерируются неодинаковым уровнем пролиферативных процессов, что проявляется в изменении интенсивности размножения клеток в онтогенезе и при репаративной регенерации. Пролиферативный ответ на действие стимуляторов репродукции клеток, например гормонов, также варьирует в разных тканях. Обнаружены различия в параметрах митотического цикла клеток в быстро и медленно обновляющихся тканях. Количественные соотношения между популяциями пролиферирующих и покоящихся клеток также оказались неодинаковыми. Ткани отличаются по параметрам суточных ритмов пролиферативных процессов. Это свидетельствует о присутствии в тканях механизмов регуляции размножения клеток, которые обладают тканеспецифичностью.
В результате решения вопроса о биологической регуляции стали широко использоваться идеи кибернетического и системного подхода. Основным элементом такой регуляции является наличие отрицательной обратной связи, что делает всю систему замкнутой на саму себя, позволяет удерживать постоянство через взаимную корреляцию частей относительно друг друга. Идея регуляции размножения клеток на основе принципа отрицательной обратной связи получила развитие в работах ряда ученых (Weiss, Kavanau, 1957; Iversen, 1960). Основным итогом этих исследований явился вывод, что в тканях должны присутствовать вещества, участвующие в регуляции пролиферации клеток путем ее ингибирования.
Жизнь организма, функционирование различных систем, органов, клеток — все многообразие реакций сопровождается заменой старых структур новыми, их обновлением, или регенерацией. Регенерацию следует рассматривать в качестве основы компенсаторно-приспособительных процессов, обеспечивающих сохранение гомеостаза. Согласно Д.С.Саркисову (1977), все многообразие уровней развертывания регенерации у млекопитающих может быть представлено в следующем виде:
1) молекулярная регенерация;
2) внутриорганоидная регенерация;
3) органоидная регенерация (увеличение числа органоидов и гиперплазия ядерного аппарата); 4) клеточная регенерация (деление клеток).
Какова доля внутриклеточных и клеточных регенаторных процессов?
Например, в кишечном эпителии, в кроветворных органах и других тканях физиологическая и репаративная регенерация обеспечивается за счет клеточного размножения. В миокарде и в некоторых отделах нервной системы гибель одних клеток восполняется за счет наращивания числа ультраструктур в сохранившихся клетках (гиперплазия), т.е. органоидного типа внутриклеточной регенерации. Можно выделить три основные группы тканевых структур организма в зависимости от особенностей регенераторной реакции. В первую входят органы и ткани, в которых регенераторная реакция выражается в форме новообразования клеток. Это эпителий кожи, костный мозг, костная ткань, эпителий тонкой кишки, лимфатическая система и др. Ко второй группе, занимающей промежуточное положение, относятся органы, в которых физиологические и особенно репаративные регенераторные процессы развертываются как в форме клеточной, так и внутриклеточной регенерации; к ним относятся печень, легкие, почки, надпочечники, скелетная мускулатура и др. В третью группу включаются органы, в которых доминирует внутриклеточная регенерация, — это миокард, центральная нервная система. Для третьей группы злокачественные новообразования нехарактерны.
Принципиальное значение имеет скорость регенераторных процессов и длительность процесса, поскольку они определяют прогрессию эмбрионализации. Регенераторные процессы сопровождаются омоложением клеток. Смысл понятия дедифференци-ровки передается такими выражениями, как «видимое упрощение или утрата структур», •«омоложение», приобретение клетками «эмбриональных признаков», «утрата клетками ряда морфологических признаков», «утрата ряда признаков специализации».
Согласно точке зрения Д.С.Саркисова (1977), дедифференци-ровку можно объяснить тем, что происходит блокировка созревания клеток, а не возврат зрелых клеток к эмбриональному состоянию. Анализируя этот вопрос, Д.С.Саркисов (1977, с. 155) пишет: «…возможность «дедифференцировки» зрелых клеток становится весьма сомнительной, а возникновение структурно-функциональных аномалий различных клеточных элементов должно рассматриваться как результат тех или иных «отклонений» по пути к их окончательной дифференцировке».
Еще Г.Рибберт (1905) отмечал, что «иногда прежние клетки погибают, а их место путем регенерации занимают более простые образования, и при неблагоприятных условиях остающиеся такими же простыми». Структурная перестройка слизистой оболочки желудка после ожогов ее, при хроническом гастрите (Арушанов, 1971; Шаров, 1971; Зуфаров, 1974) свидетельствует о том, что основным процессом, обусловливающим развитие хронического гастрита, является нарушение физиологической регенерации слизистой оболочки желудка, и в частности замедление и искажение дифференцировки интенсивно пролиферирующих камбиальных клеток.
Таким образом, «омоложение» тканей (в частности, соединительной, крови, различных эпителиев) происходит на основе блокировки дифференциации делящихся камбиальных элементов, а не «дедифференцировки» зрелых клеточных форм, этот вывод получил экспериментальное подтверждение.
Применительно к опухолевому росту проблема «дедифферен-цировки» имеет принципиальное значение. Клетки опухолей характеризуются известным упрощением строения и обеднением набора ферментов по сравнению с их физиологическими прототипами. Значение эмбрионализации ткани состоит в том, что она нарушает структуру клеточных популяций, а это отражается на функции контроля гомеостаза, накопление низкодифференцированных клеток нарушает тканевый контроль, в результате чего развивается опухоль.